001/* 002 * MIT License 003 * 004 * Copyright (c) 2017 Justin Kunimune 005 * 006 * Permission is hereby granted, free of charge, to any person obtaining a copy 007 * of this software and associated documentation files (the "Software"), to deal 008 * in the Software without restriction, including without limitation the rights 009 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 010 * copies of the Software, and to permit persons to whom the Software is 011 * furnished to do so, subject to the following conditions: 012 * 013 * The above copyright notice and this permission notice shall be included in all 014 * copies or substantial portions of the Software. 015 * 016 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 017 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 018 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 019 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 020 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 021 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 022 * SOFTWARE. 023 */ 024 025package squidpony.squidgrid.mapping; 026 027/** 028 * Added to SquidLib by Tommy Ettinger on 7/4/2018, using MIT-licensed work by Justin Kunimune from 029 * <a href="https://github.com/jkunimune15/Map-Projections/blob/9f820aba788ba0b37a1c67128a4c861d243b4a46/src/utils/NumericalAnalysis.java">his Map-Projections repo</a>. 030 * @author jkunimune 031 * @author Tommy Ettinger 032 */ 033public class ProjectionTools { 034 /** 035 * Performs a definite integral using Simpson's rule and a constant step size; hard-coded to integrate a 036 * hyperellipse function. 037 * @param a The start of the integration region 038 * @param b The end of the integration region (must be greater than a) 039 * @param h The step size (must be positive) 040 * @param kappa the kappa value of the hyperellipse 041 * @return some magic stuff needed for Tobler Hyperelliptical maps 042 */ 043 public static double simpsonIntegrateHyperellipse(double a, double b, double h, double kappa) { 044 double sum = 0, ik = 1/kappa; 045 for (double x = a; x < b; x += h) { 046 if (x+h > b) h = b-x; 047 sum += h/6*(Math.pow(1 - Math.pow(Math.abs(x), kappa), ik) 048 + 4*Math.pow(1 - Math.pow(Math.abs(x + h * 0.5), kappa), ik) 049 + Math.pow(1 - Math.pow(Math.abs(x + h), kappa), ik)); 050 } 051 return sum; 052 } 053 054 /** 055 * Solves a simple ODE using Simpson's rule and a constant step size; hard-coded to solve a hyperelliptical map 056 * projection task. 057 * @param T The maximum time value at which to sample (must be positive) 058 * @param y the double array to fill with samples; must not be null and must have length 1 or greater 059 * @param h The internal step size (must be positive) 060 * @param alpha part of the hyperelliptical projection's parameters 061 * @param kappa part of the hyperelliptical projection's parameters 062 * @param epsilon calculated beforehand using {@link #simpsonIntegrateHyperellipse(double, double, double, double)} 063 * @return y, after modifications 064 */ 065 public static double[] simpsonODESolveHyperellipse(final double T, final double[] y, final double h, final double alpha, final double kappa, final double epsilon) 066 { 067 final int m = y.length - 1, n = m + 1; 068 double t = 0; 069 double sum = 0; 070 for (int i = 0; i <= m; i++) { 071 while (t < i * T / n) { 072 final double tph = Math.min(t + h, i * T / n); 073 sum += (tph - t) / 6 * (Math.abs((alpha + (1-alpha)*Math.pow(1 - Math.pow(Math.abs(t), kappa), 1.0/kappa)) / (alpha + (1-alpha)*epsilon)) 074 + 4 * Math.abs((alpha + (1-alpha)*Math.pow(1 - Math.pow(Math.abs((t + tph) * 0.5), kappa), 1.0/kappa)) / (alpha + (1-alpha)*epsilon)) 075 + Math.abs((alpha + (1-alpha)*Math.pow(1 - Math.pow(Math.abs(tph), kappa), 1.0/kappa)) / (alpha + (1-alpha)*epsilon))); 076 t = tph; 077 } 078 y[i] = sum; 079 } 080 return y; 081 } 082 083 /** 084 * Part of computing a hyperellipse; takes only a y parameter corresponding to the y on a map and a kappa parameter 085 * used by Tobler's hyperelliptical projection to determine shape. 086 * @param y y on a map, usually -1.0 to 1.0 087 * @param kappa one of the Tobler parameters 088 * @return I'm guessing the actual y used after hyperelliptical distortion; not sure 089 */ 090 public static double hyperellipse(double y, double kappa) { 091 return Math.pow(1 - Math.pow(Math.abs(y),kappa), 1/kappa); 092 } 093 094}