001package squidpony; 002 003import java.util.HashMap; 004import java.util.Map; 005 006/** 007 * The Damerau-Levenshtein Algorithm is an extension to the Levenshtein 008 * Algorithm which solves the edit distance problem between a source string and 009 * a target string with the following operations: 010 * 011 * <ul> 012 * <li>Character Insertion</li> 013 * <li>Character Deletion</li> 014 * <li>Character Replacement</li> 015 * <li>Adjacent Character Swap</li> 016 * </ul> 017 * 018 * Note that the adjacent character swap operation is an edit that may be 019 * applied when two adjacent characters in the source string match two adjacent 020 * characters in the target string, but in reverse order, rather than a general 021 * allowance for adjacent character swaps. 022 * 023 * This implementation allows the client to specify the costs of the various 024 * edit operations with the restriction that the cost of two swap operations 025 * must not be less than the cost of a delete operation followed by an insert 026 * operation. This restriction is required to preclude two swaps involving the 027 * same character being required for optimality which, in turn, enables a fast 028 * dynamic programming solution. 029 * 030 * The running time of the Damerau-Levenshtein algorithm is O(n*m) where n is 031 * the length of the source string and m is the length of the target string. 032 * This implementation consumes O(n*m) space, none of which is cached for 033 * future executions. Heavy usage may be taxing on the garbage collector. 034 * 035* @author Kevin L. Stern 036 */ 037public class DamerauLevenshteinAlgorithm { 038 039 private final int deleteCost, insertCost, replaceCost, swapCost; 040 041 /** 042 * Constructor. 043 * 044* @param deleteCost the cost of deleting a character. 045 * @param insertCost the cost of inserting a character. 046 * @param replaceCost the cost of replacing a character. 047 * @param swapCost the cost of swapping two adjacent characters. 048 */ 049 public DamerauLevenshteinAlgorithm(int deleteCost, int insertCost, int replaceCost, int swapCost) { 050 /* 051 * Required to facilitate the premise to the algorithm that two swaps of 052 * the same character are never required for optimality. 053 */ 054 if (2 * swapCost < insertCost + deleteCost) { 055 throw new IllegalArgumentException("Unsupported cost assignment"); 056 } 057 this.deleteCost = deleteCost; 058 this.insertCost = insertCost; 059 this.replaceCost = replaceCost; 060 this.swapCost = swapCost; 061 } 062 063 /** 064 * Compute the Damerau-Levenshtein distance between the specified source 065 * string and the specified target string. 066 */ 067 public int execute(CharSequence source, CharSequence target) { 068 if (source.length() == 0) { 069 return target.length() * insertCost; 070 } 071 072 if (target.length() == 0) { 073 return source.length() * deleteCost; 074 } 075 076 int[][] table = new int[source.length()][target.length()]; 077 Map<Character, Integer> sourceIndexByCharacter = new HashMap<>(); 078 079 if (source.charAt(0) != target.charAt(0)) { 080 table[0][0] = Math.min(replaceCost, deleteCost + insertCost); 081 } 082 083 sourceIndexByCharacter.put(source.charAt(0), 0); 084 085 for (int i = 1; i < source.length(); i++) { 086 int deleteDistance = table[i - 1][0] + deleteCost; 087 int insertDistance = (i + 1) * deleteCost + insertCost; 088 int matchDistance = i * deleteCost 089 + (source.charAt(i) == target.charAt(0) ? 0 : replaceCost); 090 table[i][0] = Math.min(Math.min(deleteDistance, insertDistance), 091 matchDistance); 092 } 093 094 for (int j = 1; j < target.length(); j++) { 095 int deleteDistance = table[0][j - 1] + insertCost; 096 int insertDistance = (j + 1) * insertCost + deleteCost; 097 int matchDistance = j * insertCost 098 + (source.charAt(0) == target.charAt(j) ? 0 : replaceCost); 099 table[0][j] = Math.min(Math.min(deleteDistance, insertDistance), 100 matchDistance); 101 } 102 103 for (int i = 1; i < source.length(); i++) { 104 int maxSourceLetterMatchIndex = source.charAt(i) == target 105 .charAt(0) ? 0 : -1; 106 for (int j = 1; j < target.length(); j++) { 107 Integer candidateSwapIndex = sourceIndexByCharacter.get(target 108 .charAt(j)); 109 int jSwap = maxSourceLetterMatchIndex; 110 int deleteDistance = table[i - 1][j] + deleteCost; 111 int insertDistance = table[i][j - 1] + insertCost; 112 int matchDistance = table[i - 1][j - 1]; 113 if (source.charAt(i) != target.charAt(j)) { 114 matchDistance += replaceCost; 115 } else { 116 maxSourceLetterMatchIndex = j; 117 } 118 int swapDistance; 119 if (candidateSwapIndex != null && jSwap != -1) { 120 int iSwap = candidateSwapIndex; 121 int preSwapCost; 122 if (iSwap == 0 && jSwap == 0) { 123 preSwapCost = 0; 124 } else { 125 preSwapCost = table[Math.max(0, iSwap - 1)][Math.max(0, 126 jSwap - 1)]; 127 } 128 swapDistance = preSwapCost + (i - iSwap - 1) * deleteCost 129 + (j - jSwap - 1) * insertCost + swapCost; 130 } else { 131 swapDistance = Integer.MAX_VALUE; 132 } 133 table[i][j] = Math.min( 134 Math.min(Math.min(deleteDistance, insertDistance), 135 matchDistance), swapDistance); 136 } 137 sourceIndexByCharacter.put(source.charAt(i), i); 138 } 139 return table[source.length() - 1][target.length() - 1]; 140 } 141}